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Abstract

Climate change will expose the food-producing sector to a range of challenges. Inland

aquaculture farms are particularly vulnerable, due to the difficulty in changing their

location, and therefore require specific tools to predict the influence of direct and indi-

rect effects on production, environment and economic feasibility. The objective of our

study was to apply a simple set of models to produce a set of growth, risk and suitabil-

ity maps for stakeholders within the common carp sector in Poland, to assist decision-

making under two different scenarios of climate change: a moderate situation (RCP

4.5) and an extreme situation (RCP8.5).We used present (2000–2019) and future pro-

jections (2080–2099) for water surface temperature based on land surface tempera-

ture data from regionally downscaled climate models to draw maps to: (i) show opti-

mal temperature conditions for carp growth, (ii) assess risk of disease outbreak caused

by three important common carp pathogens: Cyprinid herpesvirus 3 (CyHV-3), carp

oedema virus (CEV) and spring viremia of carp (SVCV) and (iii) predict potential suit-

ability changes of carp farming in Poland. The study identified areas with the most

and least favourable temperature conditions for carp growth, as well as those areas

with the highest/lowest number of days with suitable temperatures for virus infection.

These suitability maps showed the combined effect of direct and indirect effects of cli-

mate change projections under RCP 8.5 and RCP 4.5 scenarios. The approach applied

herein will be of useworldwide for analysing the risks of temperature increase to land-

based aquaculture, and the results presented are important for carp farmers in Poland

and elsewhere, industry in general, and government stakeholders, to understand the

direct and indirect effects of climate change on the triple bottom line of people, planet,

and profit.
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1 INTRODUCTION

InMay 2013, world aquaculture production overtook capture fisheries

for human consumption, and in 2018, 82.1 million tonnes of fish were

farmed, representing 46% of total aquatic production (FAO, 2020). In

the Western World, aquaculture predominantly takes place in estuar-

ine and coastal systems (Smaal et al., 2019); for instance, in Europe

only 16.5%of production occurs in inlandwaters. However, on aworld-

wide scale, 62.5% of aquaculture occurs in land-based systems such

as lakes, reservoirs, ponds, and rivers (FAO, 2020). Moreover, 86.5%

of finfish and 38.9% of crustaceans cultivated worldwide are grown in

inland waters – together these correspond to a combined volume of

over 50 million tonnes per year (Table 1). This contrasts sharply with

wild capture, where only 12.4% of fisheries takes place in freshwater

systems (recalculated from FAO, 2020).

Fisheries and aquaculture are sensitive to climate change due

to direct effects, such as (i) temperature-related perturbations in

metabolism or reproduction or (ii) higher mortality or morbidity due

to increased dissolved oxygen stress and indirect effects, such as (i)

changes in host susceptibility to pathogens due to shifts in overlap-

ping optimal temperature windows, (ii) increased storminess, which

increases the risk of escapees and introgression or (iii) changes in

temperature-related distribution of harmful algal bloom (HAB) species

(Townhill et al., 2018). Whereas in capture fisheries issues are more

closely linked to shifts in species distribution, leading to the loss of fish-

ing grounds but also to the emergence of new ones, the consequences

for aquaculture are quite different. Organisms are cultivated at spe-

cific farm locations in water bodies by means of structures such as

cages, rafts, longlines, trestles or as often occurs in inland waters, con-

structed earthen ponds or raceways, which themselves constitute the

water body. This occurs not just due to environmental and ecological

considerations but due to licensing and regulatory constraints (Corner

et al., 2018). Furthermore, inland aquaculture in Europe takes place at

sites where connectivity is generally weak; cages deployed in a lake or

impoundment are at a fixed position and cannot easily be moved to a

different water body, and the same applies to artificial structures such

as earthen or concrete ponds.

In addition, business mobility is a challenge: land-based aquacul-

ture is typically a small-scale activity – often a farmer will live in the

vicinity of the farm, just as in agricultural smallholdings; moreover,

TABLE 1 Relevance of land-based aquaculture at a global scale (adapted from FAO, 2020)

Category Africa Americas Asia Europe Oceania World

Inland aquaculture

Finfish 1893 1139 43,406 508 5 46,951

Crustacea 0 73 3579 0 0 3653

Molluscs 207 207

Other aquatic animals 1 528 0 528

Subtotal (103 tonnes y−1) 1893 1213 47,719 508 6 51,339

Marine and coastal aquaculture

Finfish 291 1059 3995 1892 92 7328

Crustacea 6 888 4834 0 6 5734

Molluscs 6 640 15,876 680 102 17,304

Other aquatic animals 0 387 3 0 390

Subtotal (103 tonnes y−1) 302 2587 25,093 2575 200 30,756

All aquaculture

Finfish 2184 2197 47,400 2399 97 54,279

Crustacea 6 961 8414 0 6 9387

Molluscs 6 640 16,083 680 102 17,511

Other aquatic animals 0 1 915 3 0 919

Total (103 tonnes y−1) 2196 3799 72,812 3083 205 82,095

Per cent inland

Finfish 81.7 51.8 91.6 21.2 5.2 86.5

Crustacea 0.0 7.6 42.5 – 0.0 38.9

Molluscs 0.0 0.0 1.3 0.0 0.0 1.2

Other aquatic animals – 100.0 57.7 0.0 – 42.4

Aggregate (%) 86.2 31.9 65.5 16.5 2.9 62.5

Per cent world production by continent (%) 2.7 4.6 88.6 3.8 0.3 100
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a farmer will often cultivate both in water and on land, and in SE

Asia and China ponds are commonly used for multi-trophic cultivation

(Ferreira et al., 2014). For aquaculture, these constraints, together

with (i) the expected changes in freshwater availability due to climate

change and (ii) the much lower volume of water when compared to

the ocean, which increases the coupling between air, land, and water

and therefore the susceptibility of inland systems; mean that such sys-

temsmaywell bemore sensitive to climate change effects thanmarine

systems. This is a worldwide problem, since it will affect the livelihood

of farmers and food security of populations that rely on production of

carp (e.g. EasternEurope,China), tilapia (SEAsia andChina, Brazil, Cen-

tral America, Africa), catfish (North America, SE Asia) and shrimp (SE

Asia and China, Central and South America).

Modelling tools are a useful approach to identify and assess risks

in aquaculture, but in order to be widely applicable, including in parts

of the world such as SE Asia, Africa and South America, such mod-

els must be of a generic nature, simple and flexible enough to be

applied in areas that are not data-rich. Different types of models were

identified as the most relevant for evaluating risks associated with

climate change for inland aquaculture. Geographic Information Sys-

tem (GIS) models have been used as practical decision-making tools

worldwide to improve inland and marine aquaculture sustainability

and efficiency (Ross et al., 2013). Models that explore the effects of

climate change on selected host-pathogen systems exist mostly for

marine species (Ben-Horin et al., 2013; Groner et al., 2016; Ferreira

et al., 2021) rather than for freshwater species (Macnab & Barber,

2012). GIS-based statistical models provide opportunities to evalu-

ate spatially-distributed determinants of aquatic health and disease

(Thrush et al., 2011) and this ‘risk mapping’ approach was first pro-

posed by Thrush and Peeler (2013). The authors used satellite remote-

sensing, measured environmental data and epidemiological studies to

draw riskmaps for thewhole United Kingdom (Thrush & Peeler, 2013),

enabling the identification of common carp populations susceptible

to koi herpesvirus (KHV) and spring viremia of carp virus (SVCV),

which broadly overlap the areas with the highest number of days per

year where the temperature is optimal for the establishment of these

diseases. Moreover, the output of the work may be directly applied

to identify areas where diseases can be managed in farmed popu-

lations, for example, proliferative kidney disease (PKD) outbreaks in

farmed rainbow trout (Oncorhynchus mykiss). However, except of dis-

ease modelling based on risk maps aquaculture sector expect infor-

mation that will indicate areas with the best and least suitable con-

ditions for fish farming in the future. Therefore, next generation of

maps should combine information both on risk of diseases and opti-

mal growth conditions for a specific species. To the best of our knowl-

edge, such maps were not developed and are currently not available

for the carp sector in Europe. Therefore, the aims of our work were:

(i) to produce both risk and suitability maps assessing direct, indirect

and combined effects of temperature increase on carp aquaculture in

Central Europe and (ii) to indicate how the maps may be used by farm-

ers, policymakers and other stakeholders to mitigate risk and optimize

sustainable production, food security, and employment in a changing

climate.

2 METHODS

2.1 Study area

The study area covered the area of Poland (divided into 10 × 10 km

cells) where 7081 water bodies (larger than 1 ha) with a total area

of 280,977 ha of which approximately 65,000 ha are used for com-

mon carp aquaculture (Figure 1). Farming of common carp is decentral-

ized and traditional, with farms scattered across whole country. Carps

are typically cultured in earthen ponds in extensive or semi-extensive

production systems with dietary supplementation of locally available

grains. Production cycle is 3 years long (approx. 33months) andmost of

the time fish are stocked in different ponds (fingerling, stock, grow out)

dependingonproduction stage. Pondsare relatively shallow (maximum

1.5 m deep) and the water flow is usually low. The area of production

ponds varies between small and large farms and ranges from 1 ha up to

300 ha. Considering the characteristics of the ponds, they are suscep-

tible to temperature changes. In Poland, main pathogens that threaten

the production of common carp are viruses. Three viruses were previ-

ously reported on farms across country (i) spring viremia of carp virus

(SVCV), which affects fingerlings in the spring; (ii) carp oedema virus

(CEV) an emerging disease, causing highmortality and (iii) cyprinid her-

pesvirus 3 (CyHV-3) causing fatal disease in common carp. Therefore,

in the study, we focused on temperatures suitable for abovementioned

virus development.

2.2 Calculation of water surface temperatures

Land Surface Temperature (LST) values for the total area of Poland,

including conservative representative concentration pathways (RCP

4.5) and non-mitigation business as usual (RCP 8.5) scenarios for each

of the two time slices, that is present-day (2000−2019) and long-term

(2080−2099), were provided by Plymouth Marine Laboratory (PML).

Based on the methodology developed in Thrush and Peeler (2013),

water surface temperatures (WST) were calculated using LST. The

initial algorithm was calibrated using empirical water temperatures

recorded in carp ponds in 2012–2014 and provided by courtesy of the

Institute of Ichthyobiology and Aquaculture (Polish Academy of Sci-

ence in Gołysz). Based on calculatedWST and recordedwater temper-

atures in carp ponds datasets, the regression algorithm (Supplemen-

tary Fig. S1) was built using STATISTICA 13.1 (TIBCO Software Inc.,

USA):

WST = 0.95LST + 5.29, (1)

whereWST is the temperatureofwater (◦C) recorded in carppondsand

LST is the temperature of air (◦C).

2.3 Quantification maps for optimal growth and
virus infection

First, the number of dayswithWST20◦C−34◦C, andwithin two ranges

10◦C−17◦C and 15◦C−28◦C were calculated for the two time slices



4 PANICZ ET AL.

F IGURE 1 Study area

2000−2019 and 2080−2099 in each cell (10 × 10 km) using MAT-

LAB software (MathWorks, USA). Water temperatures 20◦C−34◦C

are optimal for common carp growth (Backiel, 1964; Song-bo et al.,

2012; Stegman, 1960),whereas temperatures between10◦Cand17◦C

are optimal for successful replication and infection of SVCV (Ahne

et al., 2002) and between 15◦C and 28◦C for two warm-water viruses,

that is, CyHV-3 and CEV (Iida & Sano, 2005; Way et al., 2017; Yuasa

et al., 2008; Zhang et al., 2017).

For each cell, the number of days was calculated using following

formula:

C =
1
n

Yn∑

Y0

d0, (2)

where C is the number of days of overlap window; n is the num-

ber of years of individual time slices; Yn is the closing year of time

slice; Y0 is the starting year of time slice; d0 is the number of

days in the year with the water temperature within the assumed

threshold.

Next, based on the calculated number of days for each cell, maps

showing a percentage change in the number of days with WST

20◦C−34◦C, 10◦C−17◦C and 15◦C−28◦C between the two time

slices, that is, 2000−2019 and 2080−2099, were produced. For each

cell, the value of change (%) of average days per year was calculated

using Equations (3)–(5), accordingly.

C20−34 =
1
n0

(nn − n0) × 100%, (3)

where C20−34 is the change of average days per year with WST

20◦C−34◦C; nn is the average annual number of days 20◦C−34◦C

for years 2080−2099; n0 is the average annual number of days

20◦C−34◦C for years 2000−2019.

C10−17 =
1
n0

(nn − n0) × 100%, (4)

where C10–17 is the change of average days per year with WST

10◦C−17◦C; nn is the average annual number of days with water

temperature 10◦C−17◦C for years 2080−2099; n0 is the average

annual number of days with water temperature 10◦C−17◦C for years

2000−2019.

C15−28 =
1
n0

(nn − n0) × 100%, (5)

where C15−28 is the change of average days per year with WST

15◦C−28◦C; nn is the average annual number of days with water

temperature 15◦C−28◦C for years 2080−2099; n0 is the average

annual number of days with water temperature 15◦C−28◦C for years

2000−2019.

All calculationswere performedwith ArcGIS 10.5.Mapsweremade

using polygon reference fields by means of the choropleth method. A

continuous scale was adopted for data presentation.

2.4 Suitability maps for common carp farming

Four suitability maps were made for time slices 2000−2019 and

2080−2099 under RCP 4.5 and RCP 8.5 scenarios using data from

maps showing number of days with each of three temperature ranges.

In details, the scoring system used to rate the suitability of the area for

common carp farming was created by combining the number of days

with water temperature within the range of 20◦C−34◦C and the
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number of days with water temperature suitable for SVCV

(10◦C−17◦C), and CyHV-3 and CEV development (15◦C−28◦C).

Components used to create suitability maps were considered sep-

arately without weighing each of them (for details see discussion).

The results were assigned to ten classes divided by the method of

equal intervals, scoring from 1 to 10 (Supplementary Table S1). It

was assumed that increased number of days with water temperature

20◦C−34◦C resulted in more points assigned, since it creates more

favourable conditions for carp growth. Conversely, increased number

of dayswithwater temperature between 10◦C−17◦Cand 15◦C−28◦C

caused less points assigned due to increased disease development,

which threatens carp farming. The number of points in each cell was

calculated using Equation (6):

CS = NS20−34 + NS10−17 + NS15−28 , (6)

where CS is the number of points in each cell (calculated for time slices

2000–2019 and 2080–2099 under RCP 4.5 and RCP 8.5 scenarios);

NS20−34 is the suitability score of number of days per year with water

temperatures 20◦C−34◦C (number of scores 1−10); NS10−17 is the

suitability score of number of days per year with water temperatures

10◦C−17◦C (numberof scores1−10);NS15−28 is the suitability scoreof

number of days per year with water temperatures 15◦C−28◦C (num-

ber of scores 1−10).

Next, two maps were made to show change in suitability of geo-

graphical regions for carp farming between present-day (2000−2019)

and long-term (2080−2099) under RCP 4.5 and RCP 8.5 scenarios fol-

lowing Equation (7):

CSF = CS2080−2099 − CS2000−2019, (7)

where CSF is the number of points in each cell (calculated for RCP 4.5

and RCP 8.5 scenarios);CS2080−2099 is the number of points in each cell

for time slice 2080−2099; CS2000−2019 is the number of points in each

cell for time slice 2000−2019.

Depending on the points assigned, the cells were reclassified (equal

intervals) to five suitability classes: high (25−29 pts), medium-high

(20−24 pts), medium (15−19 pts), medium-low (10−14 pts) and low

(5−9 pts) for simplified interpretation. Moreover, an additional suit-

ability map was made to show difference between carp aquaculture

underRCP4.5 andRCP8.5models on theoccasion if the latter scenario

named ‘business as usual’ unfortunately will be more likely, following

Equation (8):

CVS = CSF8.5 − CSF4.5, (8)

where CVS is the number of points in each cell; CSF8.5 is the number of

points in each cell for RCP 8.5 scenario; CSF4.5 is the number of points

in each cell for RCP 4.5 scenario.

Suitabilitymapswere built usingArcGIS 10.5 and a continuous scale

has been adopted for data presentation.

3 RESULTS

3.1 Direct effect of temperature increase on C.
carpio growth

Our results showed that the average number of days with water tem-

perature beneficial for carp growth will increase by 28.5% and 53.5%

in 2080–2099 according to RCP 4.5 and 8.5 scenarios, respectively.

Additionally, the change in the number of days with water tempera-

ture 20◦C−34◦C in Poland ranged from 17% to 135% and from 35% to

203% for RCP 4.5 and 8.5, respectively (Supplementary Figs. S2a and

b, S3a and b and S4a and b). Regardless of the scenario, climate warm-

ing is expected to stimulate growth performance of common carp since

days with WST exceeding 30◦C were rarely found even in the RCP 8.5

scenario for 2080−2099. The highest change in number of days with

water temperature 20◦C−34◦C is forecasted for northern and south-

ern regions (Figure 2a and b).

3.2 Quantification of indirect effects of
temperature increase on carp health

This study showed that mean number of days with water temperature

suitable for CyHV-3 and CEV to induce diseases will increase by 4.4%

and17% in2080−2099underRCP4.5 and8.5, respectively.Moreover,

the increase in number of days with water temperature between 15◦C

and 28◦C in Poland ranged from 1% to 32% and from 12% to 61% for

RCP 4.5 and 8.5, respectively (Supplementary Figs. S2c and d, S3c and

d and S5a and b). The KHV andCEV temperaturemaps likewise display

an optimal growth forecast, showing a greater increase of days with

water temperature between 15◦C and 28◦C in the north of Poland and

in the mountainous regions on the south (Figure 2c and d). Regions in

the southwheremost of the carp farms are locatedwill bemore vulner-

able to KHVD and CEVD under the RCP 8.5 scenario when compared

to RCP 4.5.

In terms of SVCV, the mean number of days with water temper-

ature 10◦C−17◦C will increase by 1.8% and 17.1% in 2080–2099

under RCP 4.5 and 8.5, respectively. Additionally, we noted that

the number of days with water temperatures suitable for SVCV for

RCP 4.5 ranged from a 12% decrease to a 9% increase depend-

ing on the area, whereas for RCP 8.5 an increase between 3% and

22% will be noted across the country (Supplementary Figs. S2e and

f, S3e and f and S6a and b). The reduction of conditions suitable

for SVC development reported with RCP 4.5 will be visible in the

more mountainous southernmost areas and in north, while the cen-

tral part of Poland will note a limited increment (Figure 2e). How-

ever, an increase according to RCP 8.5 will be significant for the whole

country, with the exception of mountainous areas, where changes

will be limited (Figure 2f). Thus, farms located at the foot of moun-

tains will experience beneficial conditions compared to the rest of the

country.
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F IGURE 2 Change (%) in number of days between 2000−2019 and 2080−2099 periods with water temperature suitable for carp growth (a
and b), Cyprinid herpesvirus 3 and carp oedema virus (c and d), and Spring Viremia of Carp virus infections (e and f):WST 20◦C−34◦C for RCP 4.5
(a), 20◦C−34◦C for RCP 8.5 (b), 15◦C−28◦C for RCP 4.5 (c), 15◦C−28◦C for RCP 8.5 (d), 10◦C−17◦C for RCP 4.5 (e) and 10◦C−17◦C for RCP 8.5 (f)

3.3 Suitability maps for carp farming

The suitability maps considering both direct and indirect effects

showed that in present-day (2000–2019) time slice most of the areas

had medium suitability under RCP 4.5 and RCP 8.5 (76.3% and 84.0%

respectively) (Figure 3a and b). Suitability of the rest of the country

was medium-low, accounting for 23.3% and 15.6% under RCP 4.5 and

RCP 8.5, and less than 1% of low class in case of both RCPs. For long-

term (2080−2099) period under RCP 4.5 (Figure 3c), most areas will

havemedium (80.7%) ormedium-high (14.9%) suitability for carp farm-

ing. Whereas under RCP 8.5 scenario (Figure 3d) medium-high and

high will consist of 45.3% and 51.9% of areas in Poland, respectively.

Additionally, none (0%) of the country area will be low suitable for

carp farming under both RCP scenarios. The suitability change maps

betweenpresent-day (2000–2019) and long-term (2080–2099) period

showed that under RCP 4.5 scenario 65.7% of the country area will

keep the same class, and for 34.3% of the area, class will be one higher

(Figure 4a). While under RCP 8.5, 34.9% of the area will be one class

higher and 65.1%of the area two classes higher in long-term compared

to present-day time slice (Figure 4b). Suitability change map that com-

pared RCP 8.5 and RCP 4.5 scenarios at the end of the century showed

no change for 0.04% (one cell), one class higher for 61.4% and two

classes higher for 38.5% of the country area (Figure 4c).

4 DISCUSSION

4.1 Direct effect of temperature increase on C.
carpio growth

Common carp is highly resistant to environmental conditions (tem-

perature fluctuations, supersaturation, hypoxia, pH changes) and is

considered a thermophilic species; to maintain effective growth, the

average daily temperature should exceed 20◦C for at least 100 days

per year (Backiel, 1964; Stegman, 1960). Previous studies on common

carp farming in cages in water reaching 30◦C (Eljasik et al., 2020; Pan-

icz et al., data unpublished) showed no negative impact on growth rate

of 2nd and 3rd year fish. Moreover, as showed in Song-bo et al. (2012),

intake of feed by common carp was significantly reduced when water

temperature exceeded34◦C.Goolish andAdelman (1984) showed that

growth rate of juvenile commoncarpwashigher in temperatures above

those proposed in FAO (2018) as optimal (18◦C−25◦C). Farms located

in the north (10% of total number of farms; Hryszko et al., 2018) will

mainly benefit from the extended culture season since southernmost

areas marked with the darkest colours are mountainous and thus to

some extend not physiographically suitable for farm siting. In terms of

direct effects, a water temperature rise will thus positively affect pro-

ductionandyield.However, carppondsarewaterbodieswith relatively

low (or no) water flow and higher water temperatures can potentially

increase fish oxygen uptake and lead to hypoxic conditions, signifi-

cantly increasing mortality rate even in partially resistant species like

common carp (Wojda, 2004; Zhou et al., 2000). Moreover, other fac-

tors associatedwith temperature rise such aswater shortages (already

being observed in sector) may additionally affect carp production.

4.2 Quantification of indirect effects of
temperature increase on carp health

CyHV-3 is the most threatening virus, with a carp mortality rate of

100% (Rakus et al., 2013), while CEV may account for an 80% mor-

tality rate (Oyamatsu et al., 1997), and both viruses may co-infect fish

(Kim et al., 2020) and temperatures for infection mostly overlap with
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F IGURE 3 Suitability maps for carp farming, considering direct and indirect effects in present-day (2000−2019) period under RCP 4.5 (a) and
RCP 8.5 (b), and long-term (2080−2099) period under RCP 4.5 (c) and RCP 8.5 (d)

F IGURE 4 Suitability changemaps for carp aquaculture in period 2080−2099 for RCP 4.5 (a), RCP 8.5 (b) and change in carp culture suitability
in scenarios RCP4.5 vs. RCP 8.5 (c)

the temperature optimum for carp growth. Recent General Veterinary

Inspectorate (2020) records showed thatmost of the KHVDoutbreaks

between 2014 and 2020 were identified in the carp farms located in

the south of Poland. Similarly, in the same region, Matras et al. (2017)

confirmed the highest number of CEV cases in the 2013−2015 period.

The discrepancy in the number of confirmed cases between northern

and southern farms stems from the higher density of farm sites in the

south (Hryszko et al., 2018) but also from favourable thermal condi-

tions for disease development in this region. Therefore, carp farms in

northern Poland should consider mitigation measures to avoid spread

of CyHV-3 and CEV (e.g. certified disease-free fry, fry from own hatch-

ery, homozygosity level monitoring), since the risk of infections will

increase with climate change.

According to the General Veterinary Inspectorate (2020), SVCV is

under control, due to enhanced knowledge in the inland aquaculture

sector. Despite the overall rise of outbreak risk of SVCV in Poland and

confirmedpresenceof thevirus in theenvironment, outbreaks are rela-

tively rare and occasional (Maj-Paluch et al., 2019).Moreover, cultured
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carps were previously found to be less susceptible to SVCV than wild

carps (Woo&Cipriano, 2017 and references therein). Therefore, maps

showing increasing risk of SVCV should be taken as reminder that the

virus is still threatening the carp sector and can cause significant mor-

talities (up to 70%), especially in juvenile fish exhausted after the win-

tering period (Ahneet al., 2002). Additionally, viral diseases are difficult

to remove from the environment. For instance, in farms with CyHV-

3 history (Bergmann et al., 2006) viruses remain active and cause sig-

nificant carp loses (Panicz et al., 2020). Moreover, other organisms co-

existing in pond culture, such as invertebrates, can accumulate virus

particles and act as infection reservoirs (Kielpinski et al., 2010; Pan-

icz et al., 2020). To envisage the combined effects of direct and indi-

rect factors of climate change on carp farming in the future, the results

from both quantificationmapswere ranked andmerged into a suitabil-

ity map.

4.3 Suitability maps for carp farming

Changes in Polish freshwater aquaculture caused by climate warming

are already tangible and, based on our results, the whole country

may experience them to a greater or lesser extent, depending on the

RCP scenario. In our study, the initial idea of risk mapping created in

Thrush and Peeler (2013) has been further developed to a suitability

mapping that provides information on establishment of pathogens and

additionally considers future hydrochemical farming conditions. To our

knowledge, resultingmaps for the first time assessed the degree of site

suitability for farming of common carp in Poland under two RCP sce-

narios for each of the two time slices, that is, present-day (2000−2019)

and long-term (2080−2099). The results showed that higher emissions

(RCP 8.5) will increase the number of sites that are suitable for carp

farming mainly due to higher number of days per year that estimated

daily average pond surface temperatures satisfy optimum criteria for

common carp growth. Our results are in line with findings obtained

in Varga et al. (2020), where carp sector in Hungary is expected to

increase production of carp over the next decades. Authors showed

that regardless of the RCP scenario (4.5 and 8.5), the result of higher

anabolic activity and appetite of carp, and for this reason, feed utiliza-

tion will be more efficient. However, as underlined by authors model

did not consider the effects of climate change on fish diseases and the

risk of diseases will increase, specifically due to the increase in water

temperature and extreme weather events (Marcos López et al., 2010).

In our study, all components (growth, CyHV-3/CEV and SVCV) were

considered separately as independent factorswith different character-

istics, that is, temperature range and impact in relation to temperature

increase. Fish growth is directly dependent on water temperature, but

dependence has a non-linear character as fish allocate some part of

energy to gonad development and reproductive behaviour (Wootton

et al., 2022). Therefore, in our paper, we did not want to overestimate

the impact of the increased number of days with water temperatures

suitable for carp growth. Diseases were frequently excluded from var-

ious assessments of climate impact on aquaculture (Lorentzen, 2008;

Froehlich et al., 2022; Varga et al., 2020). Mainly due to problematic

quantification of their impact on aquaculture in relation to other com-

ponents (low-oxygen hazard, flooding risk, etc.) (Callaway et al., 2012).

In our paper, CyHV-3/CEV and SVCV were considered as separate

components used to make suitability maps due to following reasons:

(i) temperature range for development of the pathogens overlap only

to a minor extent (12◦C−17◦C vs. 15◦C−28◦C); (ii) co-infection has

not been described for these pathogens (but frequent for CyHV-3

and CEV) (Kim et al., 2020) and (iii) according to numerous findings,

the risk of known and emerging diseases will increase with further

temperature rise, but also with other drivers of change (Handisyde

et al., 2017; Kennedy et al., 2016; Reid et al., 2019). Despite increasing

number of days permissive for diseases development, suitability maps

made in our study showed that towards the end of the century, most

of the Poland area will have increasing number of areas suitable

for common carp farming. Therefore, climate change may intensify

common carp production but also may lead to species diversification

and increase of biomass yield from earthen ponds ecosystems.

In assumptions, the suitability maps have been designed as an

‘open’ and adaptable tool to assist both assessment and selection of

aquaculture sites for other aquaculture species whose farming depend

on different species-specific array of direct and indirect climate change

factors. For example, suitability maps developed for freshwater aqua-

culture of rainbow trout could include data related to temperatures

and additionally information on projections of changes in velocity and

the volume ofwater in rivers that subsequently flows through the farm

as well as information on likeliness of heavy-rainfall events in future.

Such information is crucial for the farmers as increasing sediment load

can reduce or arrest the filtration rate of aquatic organisms and lead

to contamination (Brinkmann et al., 2013; Reid et al., 2019). In case

of marine aquaculture, suitability maps may support site selection

procedure as projections related to various environmental variables

(i.e., significant wave height) are now accessible for evaluating which

areas have higher probability of being affected by storms (Porporato

et al., 2020). As highlighted by our results, the application on suitability

maps for assessment and selection of aquaculture sites in terms of

climate change could be both tested in other areas and extended to

different species, not only aquatic.

5 CONCLUSIONS

Inland aquaculture in Central Europe is currently at a turning point,

and carp farmers seek new solutions and tools to produce common

carp and offer customers convenient (processed) carp products widely

available through the year.Our studyprovides carp farmers, stakehold-

ers and decision-makers involved in inland aquaculture with suitabil-

ity maps that show both opportunities and threats. Farms located in

regions predicted with higher number of days with favourable culture

conditions for carp growth (water temperature 20◦C−34◦C) will be

able to shorten production cycle and increase production yield. How-

ever, at the same time, risk-maps made for SVCV, CyHV-3 and CEV,

threemain pathogens responsible for carpmortalities, showed regions

that will experience an increase in the number of days with permissive
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water temperatures for virus infection. As the carp farming business is

a stationary with respect to location, the set of suitability maps devel-

oped in this work serves as a predictive tool that allows farmers to plan

and execute steps needed to preparemitigation and adaptation actions

in response to climate change. The approach presented in our paper

may be transferred and applied in various aquaculture sectors involved

in finfish and invertebrate farming, both in freshwater and in marine

conditions.
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