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DAbstract

A spatially dynamic model for the productivity of spores and adults of green macroalgae (Enteromorpha sp.) was developed for a
mesotidal estuary (Mondego estuary, Portugal). Many of the algal processes and parameters included in the model were experimentally
obtained. Model predictions were compared to a real time series (1993–1997) of macroalgal biomass variation and the two sets show a
good agreement (ANOVA, P < 0.001). Results suggest that algal growth is highly sensitive to small depth variations and exhibits differ-
ent patterns of variation in different seasons. On a yearly basis, global calculations for the south channel of the estuary (137 ha) suggest
that during blooming years, macroalgal biomass may reach about 21,205 ton DW compared to 240 ton DW in regular years. On a sea-
sonal basis, the difference may be even more significant. The consequences of such variations on the nitrogen and phosphorus loading of
the system and the adjacent coastal area are discussed.
� 2007 Elsevier Ltd. All rights reserved.
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R1. Introduction

In the last decades several ecological models of macroal-
gal productivity were developed (e.g. Ferreira and Ramos,
1989; Bendoricchio et al., 1993, 1994; Solidoro et al., 1997;
Martins and Marques, 2002; Baird et al., 2003) aiming to
increase the knowledge about the consequences of eutro-
phication processes ongoing in many coastal areas around
the world (e.g. Ferreira et al., in press). All these works
describe the key processes of algal growth and the relation-
ships with environmental parameters to make valuable pre-
dictions about algal growth and biomass per unit area.
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Nowadays, we have realized that in order to fully under-
stand the impacts of eutrophication, we need to estimate
global values of algal production and their impacts both
on the local and adjacent costal systems (e.g. Flindt
et al., 1997). Such large-scale assessments, which are able
to integrate the causes and effects of eutrophication in
coastal areas, both temporally and spatially, can only be
achieved with modelling (e.g. Korpinen et al., 2004).
Despite the recent use of this holistic approach to evaluate,
control and manage coastal eutrophication (e.g. Simas
et al., 2001; Alvera-Azcárate et al., 2003; Korpinen et al.,
2004; Nobre et al., 2005), there is still a lack in global cal-
culations concerning many estuarine systems. On the other
hand, although most of the works make an exhaustive
description of the processes that determine the growth
and biomass of adult macroalgae, no references are made,
ons on the productivity of green macroalgae in a ..., Mar. Pollut.
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in general, to the processes that control macroalgal spore
germination and their relation to adult macroalgae bio-
mass. However, experimental work suggests that the
recruitment processes and the factors affecting early life
stages determine the development and the dominance pat-
terns of macroalgal blooms (Lotze and Worm, 2000).
Additionally, it seems that the development of green algal
mats is initiated either by overwintering and regrowth of
adult plants or by the formation of small propagules (veg-
etative fragments, zospores or zygotes) (Schories et al.,
2000). Thus, it becomes clear that the full understanding
of macroalgal dynamics and, consequently of the conse-
quences of eutrophication processes, can only be achieved
if both macroalgal adult individuals and microscopic life
stages are taken into consideration (Sousa et al., in press).

Therefore, the aim of the present work was to develop a
working tool (modelling coupled to GIS) able to estimate
algal productivity (spores and adults) at the system-scale
for the south channel of the Mondego estuary, in order
to assess the impacts on nitrogen- and phosphorus-loading
on the system and on the adjacent coastal area.

2. Material and methods

2.1. Study site

The Mondego estuary is a warm-temperate system
located on the west coast of Portugal, which consists of
two different channels, north and south, separated by an
alluvial island (Fig. 1). The north channel is deeper (5–
10 m during high tide; tidal range 1–3 m), whilst the south
channel is shallower (2–4 m during high tide, tidal range
0.5–3.5 m). For a detailed characterisation of the system
see e.g. Ferreira et al. (2002) and Lillebø et al. (2005).

During the 1980s and early 1990s, several studies
assessed the ecological importance of the south channel
(e.g. Marques et al., 1993) and during the 1990s, other
works concluded about the ongoing eutrophication process
and the impacts on established primary producers (Car-
U
N

C
O

Fig. 1. Study area w
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doso et al., 2004) and consumers (Lopes et al., 2000; Dol-
beth et al., 2003; Verdelhos et al., 2005). Modelling and
theoretical approaches aiming to describe and understand
the local effects of eutrophication from a holistic perspec-
tive were also achieved (Martins and Marques, 2002;
Pardal et al., 2004; Patrı́cio et al., 2006).

The inter-annual variation of the biomass of opportu-
nistic macroalgae (mainly represented by Enteromorpha)
in the Mondego estuary is controlled by hydrodynamics,
which in turn depends on precipitation and river manage-
ment, according to the water requirements of paddy fields
in the catchment (Martins et al., 2001). In dry years, char-
acterized by decreased rainfall in late winter and spring, the
biomass of Enteromorpha tends to increase significantly,
frequently giving rise to a spring bloom (Pardal et al.,
2000). In the present work, the definitions given in the
ASSETS method for eutrophication assessment (Bricker
et al., 2003) for Overall Eutrophic Condition (OEC) are
used as follows: high OEC indicates significant expression
of macroalgal symptoms of eutrophication (i.e. spring-
early summer bloom), low OEC indicates low growth and
biomass of Enteromorpha.
E
D2.2. Model formulation

The model has four state variables: spore biomass
(mg C m�2), adult biomass (g DW m�2), adult macroalgae
N-internal concentration (lmol N (g DW)�1) and P-inter-
nal concentration (lmol P (g DW)�1) (Fig. 2). The state
variables are defined as:

dS
dt
¼ Sp � G� ZS ð1Þ

dA
dt
¼ P þ G�Adv� D� ZA � U ð2Þ

dN int

dt
¼ Nupt � N cons ð3Þ

dP int

dt
¼ P upt � P cons ð4Þ
ith bathymetry.

ions on the productivity of green macroalgae in a ..., Mar. Pollut.
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Fig. 2. Simplified conceptual diagram.
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Rwhere S is spore biomass (g DW m�2), A, adult biomass

(g DW m�2); Nint, internal nitrogen concentration (lmol N
(g DW)�1); Pint, internal phosphorus concentration
(lmol P (g DW)�1), Sp, sporulation (g DW m�2 d�1); G,
germination (d�1); ZS, grazing on spores (d�1); P, net pro-
ductivity (d�1), Adv, advection (d�1); D, decomposition
(d�1); ZA, grazing on adults (d�1); U, reproduction (d�1);
Xupt, uptake of nutrient (lmol X (g DW)�1 d�1); Xcons,
consumed nutrient (lmol X (g DW)�1 d�1), N, nitrogen
(lmol l�1), and P is phosphorus (lmol l�1).
183
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U2.2.1. Spore biomass

It is assumed that spore biomass depends on three basic
processes: sporulation (S), grazing by macroinvertebrates
(ZS) and germination (G). In general, sporulation is defined
as the release of spores by adult macroalgae, which is a
process followed by significant mortality rates (Santelices,
1990). In the present work, sporulation is defined as the
concentration of spores present in the water column, which
are able to attach to a hard substrate (mg C m�2 converted
Please cite this article in press as: Martins, I. et al., Significant variati
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to g DW m�2 assuming a conversion factor of 0.4) and to
survive. This value was obtained experimentally in situ
from January 2004 to January 2005 (Sousa et al., unpub-
lished). Results showed that although Enteromorpha spores
were present all year round in the water column of the
Mondego, spore biomass was higher in spring and early
summer. However, no significant regressions were found
between the variation of spore biomass and environmental
factors. For this reason, in the model, sporulation is
defined as a data series in accordance with the values quan-
tified by Sousa et al. (unpublished). Additionally, it is also
assumed that the variation of spores in the water column
does not differ significantly between years.

Experimental evidence suggests that herbivores may
reduce Enteromorpha propagules by 0.06–0.14 d�1 (Lotze
and Worm, 2000). The maximum grazing rate on spores
(ZmaxS) was set to 0.14 d�1 and grazer activity was consid-
ered temperature-dependent, which was described the func-
tion f(T) explained above (Eq. (8)). This is in accordance
with field data showing that amphipod grazers (e.g. Melita

sp., Amphitoe sp.) exhibit higher biomass values during
spring and summer (Pardal et al., 2000). Thus, the effects
of grazers on spores were defined by:

ZS ¼ ZmaxS � f ðT ZS
Þ ð5Þ

Spore germination was defined by:

G ¼ Gmaxf ðT Þ � f ðIÞ � f ðSSÞ � f ðNPSÞ ð6Þ

where Gmax is maximum spore germination rate (d�1); f(T),
temperature limiting factor; f(I), light limiting factor; f(SS),
salinity limiting factor; f(NPS), nitrogen and phosphorus
limiting factor. Limiting factors; f(X), vary between 0 and
1 corresponding to null and optimum conditions for germi-
nation, respectively. The germination rates of opportunistic
green macroalgae (Ulva rigida and Enteromorpha intesti-

nalis) were found to vary between 40% and 100% (Hoff-
mann and Camus, 1989). In accordance with this,
maximum spore germination rate was set at 0.8 d�1. Spore
germination depends on light and temperature, which may
be described by a photoinhibition-type expression and by a
temperature-optimum curve, respectively, as in the case of
adult macroalgal growth (e.g. Martins and Marques, 2002).
These variations are shown in Eqs. (7) and (8), respectively:

f ðIÞ ¼ I
Is
� e 1� I

Isð Þ ð7Þ

where I is photon flux density (lE m�2 s�1), and Is is opti-
mum photon flux density for Enteromorpha (lE m�2 s�1)

f ðT Þ ¼ exp �2:3 � T � T opt

T x � T opt

� �2
" #

ð8Þ

where Tx = Tmin for T 6 Topt and Tx = Tmax for T > Topt;
Topt, optimum temperature for growth (�C); Tmin, lower
temperature limit below which growth ceases (�C), and
Tmax is upper temperature limit above which growth ceases
(�C).
ons on the productivity of green macroalgae in a ..., Mar. Pollut.
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The influence of salinity variation on Enteromorpha

spore germination was experimentally assessed (Sousa
et al., in press). The results indicate that spore germination
is enhanced at 35 psu and decreases with decreasing salini-
ties. This effect was described by:

f ðSSÞ ¼ 1� S � SoptS

SxS � SoptS

� �m

ð9Þ

where SxS = SminS and m = 2.5 for S < SoptS, SxS = SmaxS

and m = 2 for S P SoptS; Sopt, optimum salinity for growth
(psu); Smin, lower salinity limit below which growth ceases
(psu); Smax is upper salinity limit above which growth
ceases (psu).

The effect of nutrients (N and P) on spore germination
was described according to Eqs. (10) and (11), which reflect
the dependency of spore growth on external nutrient con-
centration, assuming an optimum N:P range of 12–16,
and the ‘‘Liebig’s law of the minimum’’:

If N : P P 12 and N : P 6 16 : f ðNPSÞ ¼ 1

If N : P < 12 : f ðNPSÞ ¼ f ðN SÞ
If N : P > 16 : f ðNPSÞ ¼ f ðP SÞ

ð10Þ

The uptake of nutrients by spores follows a simple Michae-
lis–Menten kinetics:

f ðX SÞ ¼ VX MaxS �
½X �

½X � þ KX S

ð11Þ

where VXMaxS is maximum uptake rate of nutrient X by
spores (lmol (g DW)�1 d�1), KXS, half-saturation constant
for the uptake of the nutrient X by spores (lmol
(g DW)�1), and X is nutrient concentration (lmol l�1).

Spore half-saturation constants and maximum uptake
rates for P and N (Table 1) follow Jørgensen et al. (1991)
and Lindenschmidt (2006).
274
275
276
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2.2.2. Adult macroalgal biomass

The biomass of adults depends on spore germination,
net productivity of adults, grazing on adults by herbivores,
reproduction/sporulation, decomposition and advection
out of the system.
280
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C2.2.3. Net productivity

The net productivity of adult macroalgae (P, d�1) is
defined by:

P ¼ GP� R ð12Þ

where GP is gross productivity (d�1) and R is respiration
(d�1), which were defined by Eqs. (13) and (14),
respectively:

GP ¼ lmax � f ðIÞ � f ðT Þ � f ðSÞ � f ðNPÞ ð13Þ

where f(T) and f(I) were previously described in Eqs. (8)
and (9), respectively.

R ¼ Rmax20 � hðT�20Þ ð14Þ
Please cite this article in press as: Martins, I. et al., Significant variat
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where Rmax20 is maximum respiration rate at 20 �C, and h
is empirical coefficient.

2.2.4. Salinity

The influence of salinity on the growth of adult Entero-

morpha (f(S)) is based on the experimental work by Mar-
tins et al. (1999) and described by:

For salinity P 5 f ðSÞ ¼ 1� S � Sopt

Sx� Sopt

� �m

ð15Þ

where Sx = Smin and m = 2.5 for S < Sopt; Sx = Smax and
m = 2 for S P Sopt.

For salinity < 5 f ðSÞ ¼ S � Smin

Sopt � Smin

:

Sopt is optimum salinity at which growth rate is maxi-
mum (psu); Smin, lower salinity limit at which growth rate
ceases (psu); Smax is upper salinity limit at which growth
ceases (psu).

2.2.5. Nutrients

It is assumed that the growth of adult macroalgae
depends on their internal nitrogen (N) (Björnsäter and
Wheeler, 1990) and internal phosphorus (P) concentra-
tions. These dependencies were defined by:

If Nint : Pint P 12 and Nint : Pint 6 16 : f ðNPAÞ ¼ 1

If Nint : Pint < 12 : f ðNPAÞ ¼ f ðN AÞ
If Nint : Pint > 16 : f ðNPAÞ ¼ f ðP AÞ

ð16Þ

f ðX Þ ¼ X int � X imin

kqxþ X int � X imin

ð17Þ

where Ximin is subsistence quota for nutrient X (lmol X
(g DW)�1); kq, nutrient half-saturation constant for
growth limitation (lmol X (g DW)�1), X � NA or PA.

The uptake of nitrogen (nitrate and ammonia) (Nupt in
Eq. (3)) and phosphorus (Pupt in Eq. (4)) by Enteromorpha

adults was described by:

X upt ¼
X imax � X int

X imax � X imin

:
V max � X ext

Kx þ X ext

ð18Þ

where Xint is internal nutrient concentration (lmol X
(g DW)�1); Ximax, maximum internal concentration of
nutrient (lmol X (g DW)�1); Ximin, minimum internal con-
centration of nutrient (lmol X (g DW)�1); Vmax, maximum
uptake rate of nutrient (lmol X (g DW)�1 d�1); Kx, half-
saturation constant for the uptake of nutrient (lmol X
(g DW)�1); Xext, external concentration of nutrient (lmol
X (g DW)�1); X, N (NO3 and NH4) and P (lmol l�1).

The consumption of internal nutrients (Ncons in Eq. (3)
and Pcons in Eq. (4)) was defined by

X cons ¼ X int � X requirement ð19Þ

where Xint is internal nutrient concentration (lmol X
(g DW)�1); Xrequirement, amount of nutrient required for
growth (d�1). Daily nitrogen requirement rate for Entero-

morpha was set at 45% of internal N d�1, while the phos-
ions on the productivity of green macroalgae in a ..., Mar. Pollut.
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Table 1
Definitions, values and source of the parameters used in the model

Symbol Description Units Used
value

Literature
range

Source

lmax Maximum growth rate at Topt d�1 0.8 0.2–1.5 EPA (1985)
Rmax20 Maximum respiration rate at 20 �C d�1 0.1 0.02–0.1 EPA (1985)
h Empirical coefficient 1.047 1.01–1.2 EPA (1985)
Is Optimum light intensity for photosynthesis lmolE m�2 s�1 600 500–1000 Shellem and Josselyn (1982), Beer and

Shragge (1987)
Topt Optimum temperature for growth �C 22 15–30 Shellem and Josselyn (1982), Fitzgerald

(1978)
Tmax Upper temperature tolerance limit at which

growth ceases
�C 37 Maximum

42
Poole and Raven (1997)

Tmin Lower temperature tolerance limit at which
growth ceases

�C 10 Minimum
�20

Poole and Raven (1997)

Sopt Optimum salinity for growth psu 18 18–22 Martins et al. (1999)
Smax Upper salinity tolerance limit at which growth

ceases
psu 45 Maximum

95
Poole and Raven (1997)

Smin Lower salinity tolerance limit at which growth
ceases

psu 0 0 Poole and Raven (1997) and Martins
et al. (1999)

Nimin Minimum internal quota (subsistence quota)
for nitrogen

lmol N (g DW)�1 500 499–1717 Solidoro et al. (1997)

Nimax Maximum internal quota for nitrogen lmol N (g DW)�1 3000 1928–4285 Solidoro et al. (1997), Bendoricchio et al.
(1994)

kq Nitrogen half-saturation constant for growth lmol N (g DW)�1 1786 Maximum
1786

EPA (1985)

V maxNO3
Maximum nitrate uptake rate lmol NO3

(g DW)�1 d�1
1200 1200–1406 Bendoricchio et al. (1994)

V maxNH4
Maximum ammonium uptake rate lmol NH4

(g DW)�1 d�1
1500 3428–8913 Bendoricchio et al. (1994)

KNO3
Half-saturation constant for nitrate lmol NO3 l�1 18 18 Bendoricchio et al. (1994)

KNH4
Half-saturation constant for ammonium lmol NH4 l�1 20 14–43 Bendoricchio et al. (1994)

Pimax Maximum internal quota for phosphorus lmol P (g DW)�1 126 Maximum
126

Bendoricchio et al. (1994)

Pimin Minimum internal quota (subsistence quota)
for phosphorus

lmol P (g DW)�1 16 16–35 Bendoricchio et al. (1994)

V maxPO4
Maximum phosphorus uptake rate lmol PO4

(g DW)�1 d�1
96 178–844 Bendoricchio et al. (1994)

KPO4
Half-saturation constant for phosphorus lmol PO4 l�1 1 0.81–3.64 Bendoricchio et al. (1994)

decMax Maximum decomposition rate d�1 0.025 Paalme et al. (2002)
Reprodrate Reproduction rate-amount of biomass lost by

sporulation
d�1 0.01 Niesenbaum (1988)

Germmax Maximum germination d�1 0.8 0.4–1.0 Hoffmann and Camus (1989)
SporGrazrate Maximum macroinvertebrate grazing rate on

spores
d�1 0.14 0.06–0.14 Lotze and Worm (2000)

TopGrazSp Optimum temperature for grazers �C 22 15–30 Pardal et al. (2000)
TmaxGrazSp Upper temperature for grazers �C 45 Maximum

42
Poole and Raven (1997)

TminGrazSp Lower temperature for grazers �C 10 Minimum
�20

Poole and Raven (1997)

SoptSp Optimum salinity for growth of spores psu 35 18–22 Sousa et al. (in press)
SmaxSp Upper salinity for growth of spores psu 45 Maximum

95
Poole and Raven (1997)

Smin Lower salinity for growth of spores psu 10 0 Poole and Raven (1997) and Martins
et al. (1999)

VmaxNSp Maximum nitrogen uptake rate by spores lmol N
(g DW)�1 d�1

0.6 1200–1406 Lindenschmidt (2006)

KNSp Spore half-saturation constant for nitrogen lmol N l�1 1.7857 17.85 Lindenschmidt (2006)
VmaxPSp Maximum phosphorus uptake rate by spores lmol PO4

(g DW)�1 d�1
0.14 178–844 Lindenschmidt (2006)

KPSp Spore half-saturation constant for phosphorus lmol PO4 l�1 0.03225 0.81–3.64 Lindenschmidt (2006)
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Nitrogen requirement rate was based on the range 37.3
and 7.4 mg N (g DW)�1 d�1 obtained for phytoplankton
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and Ulva lactuca, respectively (Pedersen and Borum,
1996), and assuming that nitrogen represents 3.25% of
macroalgal dry weight (Neto, 2004). Phosphorus require-
ons on the productivity of green macroalgae in a ..., Mar. Pollut.
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ment rate was achieved by calibration and taking into con-
sideration that P represents a lower % of macroalgal dry
weight compared to N and that, apparently, the depletion
of P occurs faster than N-depletion due to different types
of internal pools (Björnsäter and Wheeler, 1990).

2.2.6. Herbivory

Ephemeral algae have significant losses due to herbivory
both at the microscopic and at the adult stages (Lotze and
Worm, 2000; Giannotti and McGlathery, 2001). Based on
experimental values, the maximum grazing rate on adults
(ZmaxA) was set at 0.02 d�1 and, as in the case of spores,
grazing is considered to be a temperature-dependent pro-
cess (Eq. (8)):

ZA ¼ ZmaxA � f ðT Þ ð20Þ
T
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2.2.7. Sporulation

Macroalgae may allocate a significant amount of their
biomass to the formation of zoospores and gametes (Nie-
senbaum, 1988), specially during warmer months, when
the percentage of reproductive biomass may reach 60%.
To account for this adult biomass loss process, the model
considers a maximum reproduction rate of 0.01 d�1 at
20 �C defined by:

Sp ¼ Spmax � hðT�20Þ ð21Þ
where h is empirical coefficient.

2.2.8. Decomposition

Decomposition is another important loss process, par-
ticularly when during intensive growing periods, macroal-
gae accumulate in layers where growth rate decreases
exponentially through the canopy (Vergara et al., 1998).
In this situation, the upper layers remain photosyntheti-
cally active, whereas the deeper layers undergo decomposi-
tion due to extreme self-shading (Hernández et al., 1997).
Due to spring and summer high air and water tempera-
tures, this process may be particularly significant in
warm-temperate estuaries such as the Mondego estuary.
Thus, decomposition was described by:

D ¼ Drmaxh
ðT�20Þ ð22Þ

Decomposition rate (Drmax) at 20 �C was calibrated to
0.025 d�1, which is in accordance to a decomposition rate
of 65% during 28 days for Cladophora glomerata obtained
by Paalme et al. (2002).

2.2.9. Advection

In estuaries and other coastal systems with significant
hydrodynamics, the loss of macroalgae and other macro-
phytes to the ocean is a process with significant impacts
on the mass balance of plant biomass and nutrients within
these systems (Flindt et al., 1997; Salomonsen et al., 1997).
The present model does not explicitly simulate hydrody-
namics. However, based on predicted macroalgal produc-
tion and on in situ quantification of the amount of
Please cite this article in press as: Martins, I. et al., Significant variat
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drifting macroalgae (Neto, 2004), it was possible to
describe Enteromorpha advection as being dependent on
sluice operation through a ‘‘binary’’ effect, ranging from
0.4 to 10% d�1 of macroalgal biomass drifted out of the
system when the sluice is closed or opened, respectively.
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2.2.10. Desiccation

In some coastal systems, where temperature and light
intensities are seasonally very high, intertidal macroalgae
frequently undergo desiccation stress, at least, during some
parts of the day (Bell, 1993, 1995; Matta and Chapman,
1995). This process has been related to the summer decline
of some macroalgal populations (Rivers and Peckol, 1995;
Hernández et al., 1997). It was previously argued that pro-
ductivity models of macroalgae inhabiting such areas
should include the description of macroalgal desiccation
(Martins and Marques, 2002). Therefore, the model
accounts for the seasonal and daily effect of desiccation
on algae. Desiccated thalli have no water for evaporative
cooling and can greatly exceed air temperature (up to
20 �C above air temperature) (Bell, 1995). In the model,
it is assumed that from April to September and from 11
a.m. until 4 p.m., emerged algae will exceed the air temper-
ature in 5 �C. This value accounts for the fact that thallus
within aggregations prolongs the hydrated state (Bell,
1995) and consequently, desiccation is not as severe as in
isolated thallus.
2.2.11. Light climate and tidal height
To estimate the light intensity at surface, the Brock

model (1981) was used assuming a mean cloud cover of
0.41 based on real values for the Mondego estuary. Photon
flux density at surface (PFD0, lE m�2 s�1-after conversion)
was calculated from I0 assuming that 42% of the overall
energy is available for photosynthesis (Ferreira and
Ramos, 1989). Photon flux density at depth z (PFDz) was
calculated according to the Lambert–Beer equation:

PFDz ¼ PFD0 � e�kz ð23Þ

where k is light extinction coefficient (m�1).
Based on values estimated in situ by Martins et al.

(2001), the model assumes that k depends on the amount
of freshwater entering the system, which in turn is con-
trolled by an upstream sluice status (opened or closed
expressed in the model as 1 or 0, respectively). The sluice
status depends on the amount of rainfall and on rice crop
management (Martins et al., 2001). Additionally, whenever
adult biomass exceeds a certain value (>50 g DW m�2), the
value of k is considered biomass-dependent to account for
self-shading:

k¼

2 � � � ðSluice¼ 0;AdultBiomass< 50Þ
5:59 � � � ðSluice¼ 1;AdultBiomas< 50Þ
2þð0:01�AdultBiomassÞ � � � ðSluice¼ 0;AdultBiomass P 50Þ
5:59þð0:01�AdultBiomassÞ� � �ðSluice¼ 1;AdultBiomass P 50Þ

8>>><
>>>:

ð24Þ
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In estuaries, the immersion depth of ephemeral macroalgae
and other attached macrophytes is regulated by tides. Tidal
height was simulated using the basic harmonic constitu-
ents, where HBM and HPM are low tide and high tide
heights, respectively, and vary according to the spring neap
oscillation. The depth (Depth) of any individual is spatial-
and time-dependent, since it depends both on the bathym-
etry of the point where the individual is located and on ti-
dal height:

TidalHeight ¼ HBMþHPM

2
� cos

2 � p � TIME

TidePeriod

� �
ð25Þ

HBM ¼ If :SpringNeapOscillation P 0 . . .

THEN . . . 0:2þ SpringNeapOscillation

ELSE . . . 0:2� SpringNeapOscillation

ð26Þ

HPM ¼ If . . . SpringNeapOscillation P 0 . . .

Then . . . 3:7� SpringNeapOscillation

Else3:7þ SpringNeapOscillation

ð27Þ

where 0.2 and 3.7 m correspond to the maximum tidal
range in the south channel of the Mondego estuary:

Depth ¼ TidalHeight � Bathymetry ð28Þ
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Fig. 3. Predicted (–––) and observed (——) biomass variation ± standard
error of adult Enteromorpha (g DW m�2) at +1.8 m (a). Model II-
regression between observed and predicted values (b).
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2.3. From modelling to GIS

The model was run with STELLA software using a time
step of 1.2 h for 1490 days and simulations were performed
at 33 different bathymetries (from �0.9 m to 2.30 m with a
discriminatory value of 0.1 m) using the Sensitivity specifi-

cations of STELLA software (High Performance Systems
Inc., USA). The model uses a 1.2 h time step in order to
resolve the tidal and diel cycles, and the non-linearity of
their interactions. However, predicted macroalgal biomass
is expressed at a larger scale (monthly) to allow for com-
parison with real values.

Model results where obtained at the scale of 1 m2 and
subsequently upscaled to the system using a bathymetric
map and GIS (ArcGis 9.1, ESRI, USA). Global calcula-
tions were obtained for the whole area of the south channel
of the Mondego estuary (136.5 ha). Furthermore, since
Enteromorpha show a patchy distribution within the sys-
tem, the variation of the area covered with adult algae
throughout time estimated in situ (Lopes et al., 2006) was
considered and used to perform global calculations.

Estimations of Enteromorpha internal N and P are based
on values obtained, in situ, from January 1999 to January
2001 and correspond to 3.25% and 0.11% of dry weight,
respectively (Neto, 2004). The considered macroalgae inter-
nal C content was 29% of dry weight (Duarte, 1992).

2.4. Calibration, sensitivity and statistical analysis

Parameter calibration was achieved by optimisation
algorithms. Sensitivity analysis was performed in accor-
dance to Jørgensen (1994). To assess for model reliability,
model predictions for adult biomass at depth +1.8 m were
Please cite this article in press as: Martins, I. et al., Significant variati
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compared with real data of Enteromorpha biomass quanti-
fied in the south channel of the Mondego estuary between
January 1993 and January 1997, in a field station located at
+1.8 m. Model II-regression was used to compare predic-
tions with observations. This regression model is recom-
mended whenever both variables are subject to error
(Sokal and Rohlf, 1995). The significance of the regression
was tested by analysis of variance (ANOVA), since it is the
only means of testing it in model II-regression (Fowler
et al., 1998). ANOVA was also used to assess for differ-
ences between macroalgal biomass in different years.

3. Results

Predicted adult algal biomass variation followed the
same pattern as observed biomass variation (Fig. 3). Nev-
ertheless, there are some deviations between the two sets of
values, particularly, during spring 1993, when the model
tends to overestimate macroalgal biomass and from June
onwards, when the predicted values are lower than obser-
vations. Such discrepancies are not unusual considering
that observed values correspond to a medium-term time
series of field data, which is affected by numerous stochas-
tic effects. Nevertheless, the regression between observed
and predicted values is highly significant (ANOVA,
F1,41 = 85, P < 0.001, r2 = 0.68) (Fig. 3).

The predicted variation of Enteromorpha spore biomass
is very similar during the four studied years and, although
spore biomass presents seasonal fluctuations, they are pres-
ent all year round within the water column (minimum =
0.093 g DW m�2) (Fig. 4), which is in agreement with field
measurements.
ons on the productivity of green macroalgae in a ..., Mar. Pollut.
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Fig. 4. Predicted spore biomass (mg C m�2) variation at +1.8 m.
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Adult algal biomass was significantly different
(ANOVA, P < 0.05) between the four studied years. Max-
imum predicted adult biomass at +1.8 m for 1993, 1994,
1995 and 1996 was 256.23, 14.06, 50.95 and
8.41 g DW m�2, respectively (Fig. 5). This clearly indicates
that 1993 was the most favourable year to macroalgal
growth, whilst 1996 was the least favourable. In 1995,
Enteromorpha presented the second highest biomass value
but the maximum depth distribution was lower than in
1994, which suggests the occurrence of increased light lim-
itation conditions for macroalgal growth between 1993 and
1996.

The results also indicate that algal growth is very sensi-
tive to depth variations and that, according to prevailing
conditions, it varies differently in different seasons and in
different years. In 1993, from autumn until spring, the bio-
mass of Enteromorpha increased exponentially from the
highest (�0.9 m) to the lowest depth (+2.3 m), while in
1996 the increase was only linear. In general during spring
(April–May) and early autumn (October), macroalgal bio-
mass increased exponentially towards the lowest depth,
whilst in summer, this pattern of variation changed and
either macroalgal biomass varied according to saturation-
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Fig. 5. Variation of Enteromorpha adult biomass (g
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type kinetics with bathymetry or macroalgal biomass
decreased at the lowest bathymetry (Fig. 6).

Sensitivity analysis highlighted the dependency of algal
growth on environmental factors, namely, temperature,
salinity and light. Additionally, sensitivity analysis sug-
gested that spore dynamics has significant impacts on adult
macroalgae in some years, particularly, low OEC years
(Martins et al., unpublished).

Global estimations for the south channel of the Mond-
ego estuary indicate that the inter-annual variations of
macroalgal production are very significant, ranging from
21,205 ton DW in high OEC years (1993) to 239 ton DW
in low OEC years (1996). Total macroalgal production in
1993 was 15-, 9- and 89-times higher than algal biomass
in 1994, 1995 and 1996, respectively. However, monthly
values between different years may be even more signifi-
cant. For instance, in February 1993 there were 5000-,
940- and 117,000-times more algae than in February
1994, 1995 and 1996, respectively (Fig. 7). Consequently,
the amounts of C, N and P uptake by macroalgae and
retained within the system, as well as the amounts of nutri-
ents exported to the adjacent coastal areas are also highly
variable between different years. In 1993, the fixation of
C, N and P by macroalgae was about 6150, 689 and
23 ton, respectively, while in 1996 the values decreased to
69, 8 and 0.26 ton, respectively. Assuming that 40% of
the macroalgal biomass is decomposed within the system
(Duarte and Cebrián, 1996), in 1993 about 276 ton of N
and 9.3 ton of P were retained within the south channel
of the Mondego estuary, whilst in 1996 the values
decreased to 3.1 ton of N and 0.11 ton of P. Consequently,
for a PEQ (population equivalents) of 4.4 kg N yr�1

(Alvera-Azcárate et al., 2003), the amount of N retained
in the system during high OEC years (1993) corresponds
to 156,631 inhabitants, while in low OEC years (1996)
the value decreases to 1763 inhabitants (Table 2).
DW m�2) with depth during the study period.
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4. Discussion

The present model describes quite accurately the annual
variation of opportunistic macroalgal biomass in a temper-
ate mesotidal estuary for a significant period of time (Jan-
uary 1993–January 1997). This suggests that the processes
Please cite this article in press as: Martins, I. et al., Significant variati
Bull. (2007), doi:10.1016/j.marpolbul.2007.01.023
included in the model (e.g. dependency between hydrody-
namics and algal growth, desiccation, decomposition,
advection, etc.) and the equations used to describe them,
represent fairly well the variation of macroalgae biomass
in nature. Additionally the present work is, to our knowl-
edge, the first model that describes macroalgal spore
ons on the productivity of green macroalgae in a ..., Mar. Pollut.
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Fig. 7. Bathymetric distribution of Enteromorpha biomass (g DW m�2) at the south channel of the Mondego estuary during winter (average of January,
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November and December) in the four studied years.

Table 2
Classification of the studied years according to the Assessment of Estuarine Trophic Status (ASSETS) methodology related to the Overall Eutrophic
Condition (OEC) (Bricker et al., 2003)

Annual total values 1993 1994 1995 1996

ASSETS classification of eutrophication status High OEC Medium OEC Medium OEC Low OEC
Produced Enteromorpha biomass (ton DW) 21,205 1430 2472 239
Internal-C (ton) 6150 415 717 69
Internal-N (ton) 689 47 80 8
Internal-P (ton) 23 1.6 2.7 0.26
Exported Enteromorpha (ton DW) 12,723 858 1483 143
C-exported (ton) 3688 249 430 42
N-exported (ton) 414 28 48 4.7
P-exported (ton) 14 0.94 1.6 0.16
PEQ (population equivalents) 156,631 10,562 18,257 1763
PEQ: Number of inhabitants 2.38 0.16 0.28 0.026
N-internal requirement: N-domestic load 13.5 0.91 1.57 0.15
P-internal requirement: P-domestic load 1.01 0.07 0.12 0.01

Predicted biomass of adult Enteromorpha, C-, N- and P-internal content, exported biomass and exported-C, -N and -P. Assumed PEQ was 4.4 kg N yr�1

(Alvera-Azcárate et al., 2003). The number of inhabitants in the watershed of the Mondego estuary is about 65,700 with an annual domestic load of 51 ton
of N and 23 ton of P.
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dynamics and its relationships with adult macroalgae,
which is undoubtedly a more complete approach to
describe algal dynamics, since frequently factors affecting
early life stages determine the development and the domi-
nance patterns of macroalgal blooms (Lotze and Worm,
2000). According with simulations, although the contribu-
tion of spore biomass is relatively low compared to adult
biomass, spore dynamics has a significant impact on adult
Please cite this article in press as: Martins, I. et al., Significant variat
Bull. (2007), doi:10.1016/j.marpolbul.2007.01.023
biomass, particularly during low OEC years. Specific and
detailed analysis of the effects of spore dynamics on adult
growth and biomass are reported elsewhere (Martins
et al., unpublished).

The present results indicate that there are significant
spatial variations within the same system regarding macro-
algal growth. In the present model, spatial variability is due
to different temperature and light conditions at different
ions on the productivity of green macroalgae in a ..., Mar. Pollut.
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depths which determines that, during winter and autumn,
macroalgae will be preferably located at low depths
(between +2.1 and +2.3 m) and, thus benefit from higher
light availability. On contrary, in summer macroalge will
be located mostly at higher depths (between +1.8 and
+2.2 m) with longer immersion periods, which confers a
higher protection against desiccation. However, at inter-
tidal areas, bathymetry is only one of the factors contribut-
ing to the patchy distribution of macroalgae and,
consequently, to the patchiness display of other benthic
organisms (Raffaelli et al., 2003; Kraufvelin et al., 2006).
Also the type of substrate (which affects the attachment
rate of spores, Martins, unpublished data), the organic
matter content of the underlying sediment (Lillebø et al.,
2002), the presence or absence of rooted macrophytes
(Martins et al., 2002) and grazing pressure (Albrecht,
1998) contribute to the differential growth of macroalgae
in different areas within the interdidal zone.

Calculations at the system level suggest that, in estuaries
where hydrodynamics plays a major role, macroalgal bio-
mass and consequently the amount of carbon, nitrogen
and phosphorus bounded to macroalgae show enormous
differences between different years. The non-monotonic
character of macroalgal variations and its effects have previ-
ously been reported (e.g. Raffaelli et al., 1998). According to
our results, this type of variation will have significant
impacts both in estuarine systems and on the adjacent
coastal areas. Considering that the population in the
watershed of the Mondego estuary is about 65,700 inhabit-
ants with an annual domestic load into the south channel of
51 ton of nitrogen and 23 ton of phosphorus (Ferreira et al.,
2002), in high OEC years, macroalgal internal N- and P-
requirements exceed 14-times and 1-time more the domestic
load of N and P, respectively. On the contrary, in low OEC
years, macroalgal uptake accounts only for 15% and 0.1%
the annual domestic load of N and P, respectively. This sug-
gests that, during years with low macroalgal growth (low
OEC years), there may be a potential nutrient surplus (dis-
solved N and P) to the adjacent coastal area which, in turn
may be used by coastal phytoplankton. In a study carried
out in UK estuaries, Nedwell et al. (2002) found a significant
correlation between the spring maximum chlorophyll a in
coastal waters and the total annual estuarine load of TOxN,
ammonium and phosphate. Other studies also report the
significant impacts of nutrients in the catchment on the
water quality and biogeochemical processes estuarine and
coastal waters (e.g. Sanders et al., 1997; Cao et al., 2005).

In years with high macroalgal growth (high OEC years),
assuming that 40% of macroalgal biomass is decomposed
within the system (Duarte and Cebrián, 1996), up to 89-
times more macroalgae and, consequently C-, N- and P-
bounded to macroalgae are exported to the adjacent
coastal areas compared to low OEC years. However, re-
mineralization must occur before these nutrients are avail-
able to coastal phytoplankton.

Overall this study indicates that, in some periods oppor-
tunistic macroalgae act as important sinks of nutrients
Please cite this article in press as: Martins, I. et al., Significant variati
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within the estuarine area and, consequently, significant
amounts of nutrients bounded to macroalgal tissue will
be exported to the adjacent coastal areas. There will be a
time-lag before these nutrients can be uptake by coastal
phytoplankton due to re-mineralization. On the contrary,
in other periods, when macroalgal growth is very limited,
large amounts of dissolved nutrients from domestic loads
are directly released into the adjacent coastal area and
may contribute to increased coastal phytoplankton growth.
One aspect that can change this scenario is the significant
presence of rooted-macrophytes (e.g. Zostera noltii) within
the estuarine system. These primary producers have a more
conservative growth strategy (sensu Pedersen and Borum,
1996) compared to ephemeral macroalgae and, thus, play
a much more efficient role in the removal and recycling
of nutrients.
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