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Abstract

This paper presents an object-oriented approach to ecological modelling, and develops the underlying concepts
into a structure which relates a set of “ecological” objects by means of a server, or shell, which effectively allows
these to interact with each other, and displays the results of their interaction. An ecological model, ECOWIN, has
been developed using this methodology, and this work examines the framework of the model, and describes its
general layout. The basic structure of each object consists of a public section, which interacts with other objects and
with the shell, and a private section, which carries out the activities which are characteristic of the object. The forms
in which objects interact, and some of the advantages and difficulties of thosec interactions are discussed. Some
“typical” objects are characterised, with the focus on the possibilities of adaptation and extensibility, using for
instance, the concepts of inheritance and polymorphism. Some results obtained during the development and testing
of the model in two different estuarine ecosystems are also shown, providing a practical application of the concepts
and methodologies discussed herein. The virtues of using an object-oriented approach to ecological modelling
appear to be, on the one hand, the ease of development and flexibility associated with the modularity and
inheritance properties of the objects themselves, and on the other, the much greater conceptual approximation
between natural ecosystems and interacting objects, relative to conventional structured programming methods.
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1. Introduction late sixties, but it has in recent years come into
more widespread use, following the introduction
of object extensions into high level languages

such as PASCAL and C + +, and permitting the

This paper presents a methodology for simula-
tion of processes in aquatic ecosystems, which

employs the object-oriented paradigm in order to
represent the different ecosystem compartments
and their interactions. The concept of program-
ming with objects is quite old, dating from the
development of Simula™ and Smalltalk™ in the

use of objects or classes.

The usage of object-oriented methods to simu-
late processes in ecological systems aims to sim-
plify model development due to the flexibility
associated with the modularity and inheritance
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properties of the objects themselves, and to pro-
vide much greater conceptual approximation be-
tween natural ecosystems and interacting objects,
relative to conventional structured programming
methods.

Many other approaches have been used to
simplify the usage and development of models,
and, in all cases, a balance exists between the
advantages of a particular methodology and its
scope of application. Visual modelling schemes
such as STELLA™ which allow a user to pictori-
ally define the system, have been widely used
(e.g. Losordo and Piedrahita, 1991; Maclsaac et
al., 1991; Chesney, 1993), but the introduction of
spatial variability into complex dynamic models
may require approaches such as that of Con-
stanza and Maxwell (1991), using parallel process-
ing to consider spatial interactions.

Other approaches range from the rule-based
modelling described by Muetzelfeldt et al. (1989),
which aims for a more natural linguistic formula-
tion of models using PROLOG, to modelling
shells where input/output and other common
features for any modelling environment are sim-
plified, but which rely on a conventional struc-
tured programming approach for parts of the
model inplementation (e.g. Scholten et al., 1990).

Objects have some important characteristics
which make them very interesting for program-
ming in general and for ecological modelling in
particular. An excellent description of some of
the characteristics of objects and their use in
ecological modelling has been given by Silvert
(1993). Smalltalk™ has become popular in re-
cent years due to the appearance of compiled
versions of the language, and Baveco and Linge-
man (1992) have described an object-oriented
(OOP) application for host—parasitoid relation-
ships.

The most relevant properties of objects in
terms of programming and modelling are synthe-
sised below, with examples from aquatic ecosys-
tem modelling where applicable:

(i) Encapsulation. Objects encapsulate attributes
(or properties) with methods which act on these.
Thus an object can be conceptually thought of as
an actor whose actions (methods) are governed by

its characteristics (attributes); phytoplankton, for
instance, has as one of its attributes a standing
crop and as one of its methods growth;

(ii) Inheritance. Objects may have descendants
which inherit their attributes and methods, and
these may in turn modify the inherited proper-
ties; for instance, diatoms will inherit the proper-
ties of the phytoplankton ancestor and adapt
them in order to require silica for growth;

(iti) Polymorphism. Objects are polymorphic: a
program may address a descendant of a base
object type without knowing the type, and the
methods called will be those of the descendant.
The descendant object can be of many forms, and
may in fact not have been created yet, but the
program will still work properly when a new
descendant is addressed.

(iv) Modularity and reliability. Objects are self-
contained: a program should not modify an ob-
ject’s attributes directly, but only by calling its
methods. On the other hand, an object should
not change global variables in a calling program.
This approach allows objects to be self-contained,
making debugging of complex code straightfor-
ward, and avoids propagation of errors. An object
can be tested in a separate environment, de-
bugged and plugged into its intended framework.
Furthermore, prototyping is made easy, and in
the ecological model ECOWIN described below,
the objects were “plugged in” to the model ini-
tially in a very basic form, and subsequently de-
veloped.

(v) Re-usability. Objects are re-usable, since their
modularity and degree of abstraction allows them
to be inserted in different programs with little or
no modification. If an object must be adapted,
rather than altering the code a descendant will be
created. Debugging is then limited to any new
methods, since the base-type will already have
been tested.

An in-depth discussion of the merits of objects
for general programming applications is given by
Rubenking (1992), with examples of application
code.
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Ecological systems can be described in a much
more ‘“natural” form with an OOP approach, and
the different objects may interact with each other
in different forms, offering great flexibility in the
simulation.

Despite the points above, ecological modelling
has been slow to integrate the benefits of OOP
into the discipline, as can be seen by the relative
paucity of papers addressing this topic.

This paper describes an aquatic ecosystem
model, ECOWIN, the development of which be-
gan in late 1991, using Carlingford Lough, Ire-
land, and the Tagus Estuary, Portugal as the
systems to be modelled (CEC, 1992, 1993; INICT,
1992). Both systems are macrotidal, but there are
significant differences in morphology, salinity dis-
tribution, freshwater discharge patterns and rates,
catchment usage, ecology, pollution loads and
water uses.

A fuller description of these ecosystems is be-
yond the scope of this paper, and may be found
elsewhere (Ferreira and Ramos, 1989 and refer-
ences therein; Douglas, 1992).

Carlingford Lough and the Tagus Estuary are

modelled as two very distinct types of applica-
tions, providing a wide range of conditions suit-
able for testing the robustness and versatility of
the methodology; the ecosystems have been stud-
ied in some depth, providing a good database of
information about water quality, pollution loads,
and productivity of different ecological compart-
ments.

The focus of the present work is on the con-
ceptualisation and computer implementation of
ECOWIN as a methodology for simulation. A full
discussion of the application of ECOWIN to each
ecosystem will be published shortly, addressing
the detailed structure of each model, the ap-
proach used in calibration and validation, and the
results obtained. This is a current task of the
interdisciplinary groups which participate in the
two projects.

2. Methodology

ECOWIN uses the concepts of object-oriented
programming described previously to implement

Pelagic Higher trophic levels
KDissolved substances!| |(J Demersal fish
Phytoplankton ] Nekton

X Zooplankton O Birds

i Organic detritus

Benthic External

O Sediment & Advection/diffusion
[ Microphytebenthos Man

[0 Macrophytobenthos [ Catastrophes

& Zaoobenthos

[ Select all abjects

Fig. 1. Select objects dialog box from ECOWIN. The menu structure of the shell is also shown.
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an ecological model for aquatic ecosystems. The
basic underlying structure is that of a box-model,
similar to that of Baretta and Ruardij (1988) for
the Ems-Dollard, developed using proprietary
software, or MOSES, under development for the
Scheldt using SENECA™ (see e.g. Herman,
1993).

Unlike the Ems model, however, ECOWIN is
not built around a transport model which sup-
ports several different sub-models, pelagic, ben-
thic and epibenthic, but rather consists of a series
of self-contained objects. The structure of the
model is described below.

The ECOWIN model consists of two basic
modules: a shell module and “ecological” objects.
The shell module is responsible for communica-
tion with the various objects, for interfacing with
the user, supplying model outputs, and general
housekeeping chores. Both the ECOWIN shell
and the different objects have been developed in
Turbo Pascal for Windows™ (TPW). The MS-
Windows™ environment has numerous advan-
tages for this work, a brief list of which includes:

(i) Access to a potential 64 MB of memory
using the Windows API GlobalAlloc function in
386 enhanced mode.

(i) Use of libraries written in any program-
ming language able to compile Dynamic Link
Libraries (DLL): different researchers may use C,
PASCAL, FORTRAN, etc., to build different
parts of the model and this can all be integrated
at run-time.

(iii) Expandability (e.g. through Windows NT)
to very powerful computing platforms, such as the
DEC Alpha AXP.

(iii) Use of communication between applica-
tions using Dynamic Data Exchange (DDE).

(iv) Rapid development of a state-of-the-art
interface which provides the user with an intu-
itive “natural” look and feel, consistent through
all Graphic User Interface (GUI) applications.

3. ECOWIN objects
3.1. Types of objects

The dialog shown in Fig. 1 illustrates the ob-
jects used by ECOWIN. Each object (or class) '

groups together related attributes, or state vari-
ables.

Each object may thus contain one or more
state variables. The Dissolved substances object,
for instance, contains several state variables mak-
ing up dissolved inorganic nitrogen (DIN), PO; ~
and silica. It may be extended at any time to
contain a new state variable, for instance dis-
solved oxygen. State variables may thus be
added / removed within the object, without affect-
ing the code of any other part of ECOWIN.

Similarly, the methods which control interac-
tion between state variables within the object may
be changed easily, due to encapsulation, in a
manner identical to that referred by Silvert (1993)
for a Gonyaulax—Nitzschia model.

The names of the objects shown in Fig. 1 are
generally self-explanatory, but a brief note must
be made about external objects. There are three
of these:

(i) Advection / diffusion. ECOWIN is presently
being used for estuarine work, and the Transport,
or advection /diffusion object has as its role the
transportation of any other object which requests
transportation. It is the strict responsibility of a
pelagic object to know that it needs to be trans-
ported; pelagic objects will thus request trans-
portation if the Transport object is active, and
this will correspond by transporting their state
variables, and informing them of the new distri-
bution within the ecosystem.

Because the Transport object acts to redis-
tribute the mass of state variables between boxes
rather than modify this within a box due to the
internal processes (interaction of “biologically ac-
tive” objects), it has been conceptualised as exter-
nal.

(ii) Man. Effects such as an increase in the pollu-
tant load to the catchment area, or modifications
in the discharge pattern, are methods of the Man
object. In this context, the potential attributes of
this object are demographic and industrial vari-

'An object in TPW corresponds to a class in C+ +.
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ables, coupled with environmental protection fac-
tors. In the Tagus, where domestic and industrial
wastewater discharge plays an important part in
the balance of the estuary (e.g. Ferreira, 1991)
the focus of the Man object would be on these
sorts of attributes and methods related to them.
In Carlingford Lough, however, the focus of
the object is on the role in mariculture for the
oyster Crassostrea gigas, since the oyster popula-
tion does not reproduce locally and seeding is
carried out annually by importation of spat, and
since the main “predator” of the oyster is man.

(iii) Catastrophes. Unexpected events may also be
simulated (e.g. floods, oil spills), and this object is
designed for that purpose. Events included in this
object are characterised by being of large dimen-
sions and by having extensive and profound ef-
fects. Since many of these are stochastic, the use
of this object will focus on studying system re-
sponse, rather than on predictability.

Table 1
Public methods common to all ECOWIN objects

3.2. Internal structure of an object

The structure of objects is rigid in its public
sections, which are accessed externally by other
objects or by the shell, and very flexible in its
private sections, which may only be accessed by
itself: This is valid both for attributes and meth-
ods.

The use of Private declarations within object
attributes and methods may be employed, in or-
der to force any external method calls to be made
to the Public methods by which the object ac-
cesses its attributes. However a limitation for this
in TPW is that descendant objects are also lim-
ited in access. Instead, in ECOWIN, access is
restricted by limiting the methods other objects
can access during conceptualisation.

Public methods — Objects that talk

The public sections of an object are used for
initialisation and communication, both with the
shell and between objects.

Name Interaction with

Role of the method

Shell, common ancestor
to all objects

Constructor (init)

General initialisation of the object, use of
inherited methods to read initial

conditions from a MS-EXCEL™ spreadsheet file

Destructor (done)  Shell

Turnon Shell

Destruction of the object, freeing of Windows resources where applicable

This method asks the object for the names of its state variables; these are used

by the shell for the user interface (user input), and by the respond method
which supplies appropriate values for shell output

Go Shell, private methods
and attributes

This method is invoked at each model timestep, and is responsible for accessing
the private section of the object, where all calculations take place

for Active ? methods

This method is used by other objects to enquire about state variable values

(e.g. when phytoplankton removes NH7 ), and by the shell for output

This method is the contact channel with other objects, whose Active methods
alter the properties of an object. In keeping with true OOP, these are not

altered directly: this method invokes Passive " internal methods which keep

Respond Shell and other objects
and display purposes
Balance Other objects, private
methods and attributes
track of fluxes
Integrate Shell, other objects,

common ancestor

The integrate method is called by the shell after all go methods of active objects
have been called. It in turn calls an integration routine within the ancestor

object and requests transportation to the transport object

4 P See Table 2 for a definition of the different types of private methods.
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Table 1 shows a list of public methods, com-
mon to all objects, which are used for interaction
between the different modules, and gives a short
description of the function of each.

The shell initialises each object by initialising a
pointer variable of the object base-type to subse-
quently address it by using a syntax such as:

P_NewObj := New(P_NewObject,init);

where P _NewObject is a pointer type which
points to the object. An alteration of P_NewQb-
ject to P_SonOfNewObject would be all that is
required for the descendant object of the
P _NewObject type to be invoked instead, inherit-
ing or overriding methods and attributes where
appropriate.

From the object’s “perspective”, it is irrelevant
who asks it for the names of each state variable it
possesses (P,NeAwObj .turnon), or its current val-
ues (P_NewObj .respond), because these are es-
sentially information channels. The way in which
the information supplied to the caller will subse-
quently be used is also of no concern to the
object.

In other cases, namely the go and balance
methods, which address the object’s private meth-
ods, this may sometimes not be irrelevant. The
following discussion about the private section of
an object examines this in greater detail.

Private methods — Objects that act

Private methods have been conceptually di-
vided into three types, all accessed only by the
object itself. The defined types are as follows:

(i) Active methods. These correspond to the typi-
cal “active” behaviour of an object. Examples
could be phytoplankton growth and senescence.
Phytoplankton might also accumulate persistent
pollutants as well, if these are present in the
water, and that method would internally affect its
growth method, and would also be classified as
active.

(ii) Passive methods. These correspond to the
processes which affect the attributes of an object
but in which this plays only a passive role. An
example might be grazing of phytoplankton by

zooplankton, a passive method for the phyto-
plankton, but active for zooplankton.

(iii) Neutral methods. Advection and diffusion are
considered neutral methods because in this con-
text their role is redistribution of concentrations
rather than processes of production or destruc-
tion of biomass. However, wave or tidal erosion
of, e.g., a seaweed community would be a passive
method for the seaweed object, rather than a
neutral one.

The public go and balance methods invoke all
the private methods and attributes of the object,
which calculate all fluxes of mass. Because the
attributes of each object may only be modified
after each time step and a simultaneous solution
is required for the system of equations used, a
flux array is used for each state variable which is
accessed by the object’s private methods. This
solution is similar to the distributed derivative
approach described by Silvert (1993), and appears
to be an adequate approach to global integration
at each time step.

ECOWIN thus obtains the new concentrations
for all state variables of all active objects within a
box, by means of an integration method defined
in a common ancestor of all objects. This may be
an Euler or Runge-Kutta integration, or any
other suitable numerical method.

Since, as Silvert (1993) points out, the integra-
tion routine need not be coded as an object, an
existing routine can be used, and that author has
interfaced OOP code to the routine RK4 (Press
et al., 1988, 1989).

ECOWIN, however, takes advantage of the
Windows™ environment by interfacing the an-
cestor object to a DLL, or Dynamic Link Library,
which is actually linked to the program at run
time, not at compile time. By doing so, the nu-
merical method used for integration can not only
be written in a programming language different
from the source language of the main code, but
may be altered at will without need to recompile
the program.

The transport of properties due to advection—
diffusion is solved simultaneously for all boxes, by
means of a matrix used to calculate all
advective—diffusive fluxes across box boundaries
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and integrate these for all state variables and
model boxes. This is achieved by calling the trans-
port object’s public methods by the “transporta-
ble” objects.

Several methodologies have been implemented
for calculation of advection/ diffusion: both cen-
tral differences and upwind transport objects ex-
ist, as descendants of a “parent” transport object.
The basic objects use an Euler integration, whilst
further descendants of these objects use 4th-order
Runge-Kutta integration. It is only necessary to
change one word of the code in the model shell
in order to address any one of these.

Active methods can be obligate or facultative,
i.c. they can be called by the object under any
circumstances or used only conditionally under
particular circumstances. Normally they will be
obligate, but an object may, for instance, assess
its own importance (role) within the system to
further detail calculations of essential properties
under certain conditions (e.g. if the biomass of a
property is above a certain limit).

The public balance method, which will invoke
the passive methods of the object may do nothing
more than address one method to maintain the
flux balance. In this case the calling object is
irrelevant to the passive method of the receiving

object (e.g. for grazing, the latter object does not
care who eats it).

However, it is possible that the existing mass
for a particular property is lumped together as
one state variable for public purposes (i.e. in its
interaction with other objects) but discriminated
internally into more attributes within the object;
in this case, it is up to the passive methods to
then further sub-divide the way that the con-
sumption affects the different attributes. As an
example, grazing by different zooplankton groups
may be more or less sloppy, leading to differen-
tial losses of dissolved organic carbon from phyto-
plankton cells.

3.3. Relationships between objects

The inheritance properties of objects are used
only to a certain extent, because the different
objects all intervene in the cycling of organic
matter. Initially, the conceptualisation was devel-
oped on the principle of a trophic chain by mak-
ing each successive (higher) level a descendant of
the previous one. Thus, zooplankton would “in-
herit” appropriate characteristics from the phyto-
plankton, such as the biomass consumed, and add
properties of its own. However, the cycling of

Class Sub-class 1 Sub-class 2 Sub-class 3

Advection-
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Fig. 2. Simplified scheme of a typical object hierarchy, showing taxonomic relationships.
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organic matter through the different biotic and
abiotic compartments would result in one of the
descendant objects being the parent of the first
ancestor, invalidating this approach.

The inheritance structure thus operates at two
levels in ECOWIN:

The first is a descendancy of particular types
of an object from a basic ancestor, or base-class:
this is exemplified, e.g., by the existence of spe-
cific filter-feeding and deposit-feeding benthic
objects descended from a zoobenthos object, it-
self a sub-class of a consumer ancestor; the spe-
cific filter-feeder object may in turn be developed
into further descendants (e.g. oysters and mus-
sels). A simplified scheme based on the Carling-
ford Lough model is illustrated in Fig. 2.

The second is a descendancy of objects from
ancestors which perform functions relevant to
them, and whose methods or attributes they must
use in order to carry out their own activities. As
an example, the Transport object, which is re-

Table 2

sponsible for simulating the salinity distribution
(or any conservative property) in an estuarine
system, and also for advection—diffusion of non-
conservative attributes of other objects, is a de-
scendant of the Flow object, which simulates river
flows through a yearly period.

The Flow object is responsible for computing
all freshwater flows into the model boxes, and
their temporal variation. Brief results for salinity
are presented in the next section, and the daily
and seasonal variation strongly depend on the
ways in which Flow modifies its attributes. As an
insight into flow’s methods, a continuous varia-
tion of the flow pattern might apply Eq. 1, which
uses a simple cosine function based on the modal
flow, the amplitude variation and a daily stochas-
tic variability in river flow.

Thow = Tioda

" :(cos(v*(f ~1)/180)) " (maxh + f,))
(1)

Schematic attributes and active and passive methods for some objects (neutral methods are not included: they are all advection—

diffusion processes)

Object Sample attributes # Typical active methods Typical passive methods

Transport Salt Advection—diffusion -

Dissolved substances Forms of DIN, PO}’, Nitrification, formation of Mineralization of detritus,
Si0,, D.O. particulates exsudation

Phytoplankton Phytoplankton, Production, respiration, Grazing by zooplankton,
toxic algae senescence, exsudation, fish, benthic filter-feeders

production of toxins

Phytobenthos Microalgae, Production, respiration, Grazing by zooplankton,

macroalgae, senescence fish, harvesting of seaweeds

Zooplankton

Zoobenthos

Nekton

salt marsh flora

Zooplankton, copepods

Filter-feeders,
deposit-feeders

Fish, large invertebrates
(e.g. Sepia)

Eat (& slop), grow,
reproduce, excrete, natural
mortality, swim, settle (for
benthic larvae)

Filter, grow, accumulate
metals

Hunt (including select),
grow, reproduce, excrete,
natural mortality, swim,
migrate

Predation by other objects
and within the object

Fisheries, predation by
several other objects

Fisheries, hunting by
birds, infection

@ Attributes are normally expressed in concentration units — attributes may be developed into descendant objects based on the level

of detail required.
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where Ty,,: river flow; T, 4.: modal flow; 7:
calculation timestep; A: lag factor; Maxh: maxi-
mum amplitude; f,: stochastic fluctuation.

This equation may be substituted by a time-
series, or by a function adjusted to it, where
appropriate. For Carlingford Lough, for instance,
a time-series of flow data has been used, due to
specific characteristics of the local precipitation
regime.

Another example of the second type of de-
scendancy is given by the primary producer ob-
jects which all descend from an object which
calculates global radiation, tidal heights, light ex-
tinction coefficients and water temperature, thus
providing the basic physical data on light climate
and temperature used in the active methods of
descendant objects (Duarte and Ferreira, 1993).
Whilst the phytoplankton might use the ancestor’s
methods without change, the macrophytobenthos
on tidal flats must override or extend the parent
methods in order to calculate the overlapping
tide and light window.

The objects described here have been built for
particular simulations, and the level of detail
differs for the different models. In Carlingford
Lough, for instance, the level of detail regarding
benthic filter-feeders is much greater than for the
Tagus, whereas in the latter system, the methods
related to the distribution of pollutants such as
heavy metals in different ecosystem compart-
ments must be far more detailed.

Although the model has been applied in two
very different systems, the use of the re-usability
properties of OOP has led to a significant reduc-
tion in development time; major sections of code
for different objects are shared, with descendants
being written in specific cases, often overriding
only a few particular virtual methods, such as
those containing ecosystem-specific functions.

Table 2 provides a synthesis of the some of the
objects used by ECOWIN, and a summary of
important attributes and methods of each. At-
tributes are usually expressed in concentration
units. Some of the attributes are actually devel-
oped into descendant objects in particular cases —
for example microphytobenthos and macrophyto-
benthos. Table 2 is only schematic, because one
of the fundamental advantages of using object-

oriented ecological modelling is the flexibility and
extensibility of the objects themselves, tailoring
them to the specificity of different ecosystems: it
is just as senseless to define a universal set ex-
haustively as to try to define a universal ecosys-
tem type.

4. ECOWIN shell

The ECOWIN shell is the support structure
for existing objects, for descendants of these or
for new objects which may be created in the
future. It was designed to incorporate the follow-
ing characteristics:

(i) Provide a GUI consistent with the basic
principles set out in the IBM Common User
Access (CUA) guide

(i1) Provide dialogs for several user-defined in-
puts. These include:

e definition of model boxes, in terms of their
morphology, diffusion coefficients, etc.;

e choices in the display of results, e.g. which
boxes and which variables to display;

e choices in the type of output (graphs, tables,
etc.), saving simulation data to spreadsheet files,
importing calibration data, etc.;

o definition of the model boxes, in terms of their
morphology, diffusion coefficients, etc.;

e switching objects on or off (this is the dialog
shown in Fig. 1).

(iii) Define and implement methods for read-
ing in the model initial conditions from EXCEL
files. These are actually methods of a common
ancestor object of all the model objects, and as
such it is the objects who read in the variables,
using the names of properties which they define
themselves.

(iv) Act on the user’s choice of objects, by
performing the following tasks:

o destroying any currently active objects;

e initialising the newly selected objects, making
them active;

e invoking an Enquire method which addresses
each active object in turn, by querying its
Turnon method until the object has sent the
shell all the state variables it wants to send;
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(v) When the user runs the model, interact
with the public methods of objects by:

e calling a Go method which invokes the public
Go method of all active objects, and then calls
the Integrate method of these (see the defini-
tions of public object methods above);

e calling a Respond method which invokes the
public Respond method of all active objects,
informing the shell of the values for the se-
lected state variables which it must output.
The shell is designed as a series of objects

(although not “ecological” ones), so most of the
output routines have been developed as descen-
dants of more basic methods, which means that
the shell may be quite easily extended to different
types of output. Because Windows is not a pre-
emptive operating system, the ECOWIN shell
builds in all the necessary features to allow the
model to run in the background with other appli-
cations and share CPU time.

The shell ensures that all the active objects
interact, even though the output displayed may
be user-limited to only one state variable or to
just one box (e.g. see Fig. 3).

Much of the user input has been routed
through EXCEL for Windows spreadsheet files,
for simplicity and to provide a familiar user inter-
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face. Similarly, the dataset from a simulation may
be exported in real time to an EXCEL file, and
from there to practically any application, for fur-
ther post-processing such as statistical treatment.
Future developments for the shell include coding
a DDE link which will allow the data to be sent
directly to an open spreadsheet file, multi-tasking
under Windows.

Because of the case of transporting data in
several forms between Windows applications
(files, clipboard and DDE), several things need
not necessarily be coded in all applications.
Presently, in ECOWIN, there is no method to
print data; it is simply exported to a spreadsheet,
which has a wide range of formatting capabilities,
and printed. Similarly, any screen outputs, such
as the graphs presented in the next section, are
copied onto the clipboard and pasted into a draw-
ing program or word processor, where they may
be annotated and subsequently printed.

ECOWIN runs under Windows 3.1 in a 386
PC or better. It was developed in Borland’s TPW
(version 1.5), using a 486DX at 33MHz, and a
machine of similar characteristics is recom-
mended. A normal yearly run on a 486, using a
one-day timestep, with several active objects,
takes about 30 seconds.

Salirty
25
b
3 — Simulated salinity
20 r [ Measured values O

a

0 37 73 109 146

183
Time [days)

Fig. 3. Salinity (%) in the upstream channel (box 1) of the Tagus Estuary.

219 256 282 328
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5. Sample model outputs

Since this paper focuses on the conceptualisa-
tion of ECOWIN, only a few results are shown,
illustrating applications of the methodology.
These are model runs carried out using some of
the objects, both for the Tagus Estuary and for
Carlingford Lough.

Fig. 3 shows a run of ECOWIN for the Tagus
Estuary with only the Transport object active.
The plot is for salinity in the most upstream box
of the model, where the salinity fluctuation is
greatest, and datapoints are shown, which have
been used to validate the model. The river flow is
varying continuously according to Eq. 1, between
limits of 150 and 650 m® s~ ..

Fig. 4 shows an identical graph for Carlingford
Lough, showing the salinity variation in the three
model boxes. The river discharge is quite differ-
ent from that of the Tagus, because of climatic
differences, and during the months of January
and February flows are depressed due to frosting.
The type of flow algorithm used by the Flow
object is different, and the salinity distribution
reflects this reduction in flow in the winter
months. As would be expected, the oscillation in
salinity decreases in amplitude towards the estu-
ary mouth.

The graphs in Fig. 5 (a—c) show the evolution
of NH], phytoplankton and zooplankton in Car-

S alinity

lingford Lough, with different active objects. Fig.
5a shows the evolution of these parameters in box
1 (the upstream box), with only the Dissolved
substances and Phytoplankton objects active; the
ammonia is rapidly depleted because there is no
exchange between the model boxes and with the
system end-members, and the phytoplankton
standing stock reaches a plateau, which remains
constant because no grazing objects are acting on
it.

Fig 5b shows the effect of the Transport object
on the system. Again, only box 1 is shown, for
simplicity, and the graph is of a stable yearly
pattern of variation, achieved after the model has
run for a year. There is a peak of NH} in the
beginning of the year, caused by increased river
flow in the beginning of winter and depressed
phytoplankton productivity due to low solar radi-
ation. Subsequently the phytoplankton biomass
increases during the spring, accompanied by nu-
trient depletion. The reduction of the algal stand-
ing crop during the summer months is due to
exchange with other boxes, because no grazing
object is active. In the autumn, there is a smaller
phytoplankton peak with a subsequent decline at
the end of the year.

Fig. 5c¢ shows the additional effect of the Zoo-
plankton object, for box 1, which grazes practi-
cally all of the phytoplankton biomass produced,
resulting in a very low phytoplankton standing
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Fig. 4. Salinity (%0) in the three model boxes of Carlingford Lough (box 1 — head, box 3 — mouth).
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crop. The graph shows peaks for NHJ, phyto-
plankton and zooplankton which succeed each
other in time reflecting the processes involved.

These graphs show how the modular approach
using objects may provide information about the
responses of different parts of the system. The
activation of other objects would alter the dynam-
ics of the state variables shown in these figures,
and switching them off selectively helps in
analysing the relative importance of different
processes in the ecosystem.

6. Conclusions

An object-oriented ecosystem modelling ap-
proach has great advantages in terms of model
construction, extensibility, and adaptation to par-
ticular circumstances. Objects are tailor-made to
fit a particular situation, and the focus of the
model can be placed on metal pollution, benthic
productivity, red tides, etc., by extending or
adapting different objects.

Since objects not only provide encapsulation,
but also have inheritance properties, it is easy
and convenient to develop descendants, who can
modify or extend them. For instance, the phyto-
plankton object may be further sub-divided into
diatoms and dinoflagellates, each of which share
certain common attributes, and define new at-
tributes of their own. An object can therefore be
extended according to its role in the ecosystem.

Maintenance of a particular model is thus also
greatly simplified because of the nature of OOP:
new developments can be coded as descendants
of existing objects, and the usage of polymor-
phism means that it may be only necessary to
change one word of code in the shell (the name
of the new instance of the class) to address it
throughout the whole system.

As was shown previously, objects may be
switched on or off, which parallels their existence
(or importance) within a system. The analysis of
the model’s sensitivity to different components
may be much more easily studied, even “on the
fly”’, by altering the characteristics of the ecosys-
tem.

ECOWIN does not provide a possibility to

construct objects from within the shell, and some
programming is necessary. However, it takes full
advantage of OOP, allowing the user to interface
his objects to the shell quickly and easily.

ECOWIN thus strikes a balance between a
complete “packaged software” approach, which
will not easily lend itself to extensions to code,
and a first or second generation modelling ap-
proach. In the first case, usage is simplified, but
limitations arise as the complexity of the simu-
lated system increases. In the latter case, many
changes can be effected, but interaction with the
user is normally tedious, and modifications usu-
ally require a profound understanding of the code,
accompanied by extensive debugging.

Unfortunately, the latter approach tends to
mean that the user-base of models is frequently
very restricted, which does little to diversify the
knowledge sources of different processes involved
in ecological modelling, which must by nature be
interdisciplinary.

Limitations on the size of models can be linked
to three factors: computer memory, model com-
plexity, and execution speed. The use of pointers
and large memory models in Windows, the ad-
vent of native 32-bit code for Windows NT and
the constant increase in RAM on personal com-
puters means that the limitations will focus more
on complexity and speed.

In ECOWIN, size limitations are essentially
those presently imposed by the operating system
and hardware: The compiler produces fast exe-
cutable code, allowing a complex set of state
variables and interrelationships to be considered.
The approach used means that this ecosystem
complexity may be built up gradually and with
limited scope for errors, without leading to a
tangle of equations and variables, and easily al-
lows several people to work simultaneously on
different objects of a model (a sort of human
parallel processing).

The design specifications of ECOWIN im-
posed a degree of abstraction of the shell from
the model objects, which gives the objects scope
to define almost totally how the system behaves.
The shell is comparable to an ecosystem which
may contain objects. If it contains water, then this
will exhibit typical “water” behaviour, such as
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currents and resuspension of deposited material,
encapsulated in a Water object. The model sys-
tem may then be built upon by adding different
components, to correspond to existing ecosystem
compartments, such as phytobenthos or fish.

For the user of the model, the objects and
shell appear to be seamlessly integrated, but in
fact the two parts are very loosely coupled. They
have a type of client-server relationship: the shell
will run with no objects present, although it will
do very little, and as objects are plugged in the
system, it will respond appropriately.

For the programmer, the only thing that
ECOWIN requires is conformism for the public
structure of a typical object. The rest is up to the
individual user. If any objects are not to his
liking, he can throw them away and write new
ones: better still, write a descendant.
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